

A Comparison between Framed-based and Event-based **Cameras for Flapping-Wing Robot Perception**

R. Tapia, J.P. Rodríguez-Gómez, J.A. Sanchez-Diaz, F.J. Gañán, I.G. Rodríguez, J. Luna-Santamaria, J.R. Martínez-de Dios, A. Ollero

GRVC Robotics Lab, University of Seville

Motivation

GRIFFIN ornithopters aim at flying long distances and performing inspection & maintenance tasks. For this reason, they need (i) energy efficiency, (ii) perception capabilities, and (iii) autonomy.

- Event cameras have shown to be of benefit to GRIFFIN flapping-wing robots:
- Event-based visual guidance [1].
- Event-based dynamic **obstacle avoidance** [2].

However, are event-based cameras a more suitable solution for ornithopter perception than frame-based cameras?

Frame-based cameras **Event-based cameras**

Flight Requirements

Objectives

We intend to answer the following question: Which vision sensor is more suitable for flapping-wing robots?

Methodology

This work presents qualitative and quantitative comparisons between different vision sensors.

Name	Туре	Ch.	Resolution	Dimensions (mm)	FPS	Weight (g)
DAVIS346	EVENT	1	346×260	40×60×25	APS:30	100
eCapture G53	STEREO	3	640×400	50×14.9×20	30	100
Realsense D435	STEREO	3	1280×720	90×25×25	30	340
ELP Mini720p	MONO	3	1280×720	39×39×20	30	17
StereoLabs ZED	STEREO	3	1280×720	175×30×33	60	170
mvBlueFOX MLC200wC	MONO	3	752×480	35×33×25	90	10
mvBlueFOX MLC200wG	MONO	1	752×480	35×33×25	90	10

- We assess dynamic range by evaluating the capacity of detecting **ArUco markers**.
- ArUco boards were separated by a plate. One board was illuminated with **constant lighting**, while the second one with **increasing lighting**.
- Events were accumulated at 30 Hz to **reconstruct frames** using E2VID.

Motion Blur

- We evaluated the **blur** produced by a line as a function of the **camera pitch rate**.
- The events from DVS were accumulated in **event images** of 1000 events.
- The amount of **blur** was evaluated as the relative increase in its **thickness**.

Application Dependent Requirements

We evaluate the performance of commonly used **computer vision algorithms** using **events** and **images** collected on board the E-Flap GRIFFIN ornithopter.

The ornithopter flew over: a 7×8 **checkerboard**, a pattern with two **horizontal lines**, and two **people**. Pose ground truth was obtained using the GRVC Robotics Lab OptiTrack MCS.

The sensors are compared considering the **ornithopter requirements**, which can be classified into:

- **Platform** requirements \rightarrow Payload, size, weight distribution, and power consumption.
- **Flight** requirements \rightarrow Motion blur and dynamic range.
- Application requirements.

Setups used for power consumption (A), motion blur (B), and dynamic range (C) experiments. Scenario D was used to evaluate different event- and frame-based algorithms.

Platform Requirements

Erame cameras are shill smaller and lighter than event ca	it camera
---	-----------

	Representation	Algorithms				
Corner detection	Single events	Harris, eHarris*				
VIO	Event images	VINS-MONO, USLAM				
Line detection	Event images	Hough transform				
Human detection	Reconstructed frames	YOLO				

	Corner detection			VIO			Line detection			Human detection			
	Pr.	Rec.	Freq.	E_{RMS}	E_{σ}	$oldsymbol{arepsilon}_{ ext{goal}}$	$E_{ ho}$	Ν	Freq.	Acc.	Pr.	Rec.	Freq.
APS	0.972	0.806	39.92	0.828	0.439	0.231	0.529	1.886	39.92	0.960	0.960	1.000	39.92
DVS	0.891	0.909	0.97M	0.879	0.607	0.277	0.377	1.893	119.903	0.909	0.985	0.921	57.69
RS	1.000	0.014	29.96	1.178	0.698	0.304	0.255	0.659	29.96	0.759	0.869	0.857	29.96

- The results using single events and e.img. tend to **outperform** those obtained with intensity frames.
- Event-based methods provided the fastest input rates (i.e., potentiallyfaster responses).

Conclusions

- Our results suggest event cameras as the most suitable sensors for ornithopters.
- It also evidences some open challenges for event-based vision on board flapping-wing robots.
- Frame-based methods are in a considerably **mature stage** w.r.t. event algorithms.
- The growth of the event vision community suggests **novel**, **faster**, and more **robust** algorithms.

References

[1] A. Gómez Eguíluz et al., "Why fly blind? event-based visual guidance for ornithopter robot flight," in IEEE/RSJ IROS, 2021.

[2] J. P. Rodríguez-Gómez et al., "Free as a bird: Event-based dynamic sense-and-avoid for ornithopter robot flight," IEEE RA-L, 2022.

Follow our Latest Advances

י המחול למחולומה מול הנוון החומוולו מחת ווצוונלו נוומח לעלוון למחולומה.

• The evolution of event cameras technology **tends to smaller and more lightweight devices**.

Power Consumption

- The power consumption depends on the number of events generated.
- DVS reported one of the lowest **consumptions** when flapping at \sim [3.5, 5] Hz (typical range of our ornithopters).
 - ---- DVS High-Dynamic ---- G53 ---- RSDVS Low-Dynamic _____ ELP ____ BFOX-C \blacksquare ZED \blacksquare BFOX-G - - DVS Static $\blacksquare APS$

Acknowledgments

This work was funded by the European Research Council as part of **GRIFFIN** ERC Advanced Grant 2017 (Action 788247). Partial funding was obtained from the project **ROBMIND** (Ref. PDC2021-121524-100) and from the Plan Estatal de Investigación Científica y Técnica y de Innovación of the Ministerio de Universidades del Gobierno de España (FPU19/04692 and FPU21/05333).

